Google Compute Engine
Google's Compute Engine, which falls under the category of infrastructure as a service (IaaS), enables businesses to create and manage virtual machines in the cloud. This platform facilitates cloud transformation by offering computing infrastructure in both standard sizes and custom machine configurations. General-purpose machines, like the E2, N1, N2, and N2D, strike a balance between cost and performance, making them suitable for a variety of applications. For workloads that demand high processing power, compute-optimized machines (C2) deliver superior performance with advanced virtual CPUs. Memory-optimized systems (M2) are tailored for applications requiring extensive memory, making them perfect for in-memory database solutions. Additionally, accelerator-optimized machines (A2), which utilize A100 GPUs, cater to applications that have high computational demands. Users can integrate Compute Engine with other Google Cloud Services, including AI and machine learning or data analytics tools, to enhance their capabilities. To maintain sufficient application capacity during scaling, reservations are available, providing users with peace of mind. Furthermore, financial savings can be achieved through sustained-use discounts, and even greater savings can be realized with committed-use discounts, making it an attractive option for organizations looking to optimize their cloud spending. Overall, Compute Engine is designed not only to meet current needs but also to adapt and grow with future demands.
Learn more
RunPod
RunPod offers a robust cloud infrastructure designed for effortless deployment and scalability of AI workloads utilizing GPU-powered pods. By providing a diverse selection of NVIDIA GPUs, including options like the A100 and H100, RunPod ensures that machine learning models can be trained and deployed with high performance and minimal latency. The platform prioritizes user-friendliness, enabling users to create pods within seconds and adjust their scale dynamically to align with demand. Additionally, features such as autoscaling, real-time analytics, and serverless scaling contribute to making RunPod an excellent choice for startups, academic institutions, and large enterprises that require a flexible, powerful, and cost-effective environment for AI development and inference. Furthermore, this adaptability allows users to focus on innovation rather than infrastructure management.
Learn more
Nebius
An advanced platform tailored for training purposes comes fitted with NVIDIA® H100 Tensor Core GPUs, providing attractive pricing options and customized assistance. This system is specifically engineered to manage large-scale machine learning tasks, enabling effective multihost training that leverages thousands of interconnected H100 GPUs through the cutting-edge InfiniBand network, reaching speeds as high as 3.2Tb/s per host. Users can enjoy substantial financial benefits, including a minimum of 50% savings on GPU compute costs in comparison to top public cloud alternatives*, alongside additional discounts for GPU reservations and bulk ordering. To ensure a seamless onboarding experience, we offer dedicated engineering support that guarantees efficient platform integration while optimizing your existing infrastructure and deploying Kubernetes. Our fully managed Kubernetes service simplifies the deployment, scaling, and oversight of machine learning frameworks, facilitating multi-node GPU training with remarkable ease. Furthermore, our Marketplace provides a selection of machine learning libraries, applications, frameworks, and tools designed to improve your model training process. New users are encouraged to take advantage of a free one-month trial, allowing them to navigate the platform's features without any commitment. This unique blend of high performance and expert support positions our platform as an exceptional choice for organizations aiming to advance their machine learning projects and achieve their goals. Ultimately, this offering not only enhances productivity but also fosters innovation and growth in the field of artificial intelligence.
Learn more
Azure Virtual Machines
Elevate the performance of your vital business and mission-focused workloads by migrating them to the Azure infrastructure. Take advantage of Azure Virtual Machines to run SQL Server, SAP, Oracle® software, and high-performance computing applications effortlessly. You can select your desired Linux distribution or Windows Server for your deployments. Create virtual machines capable of configurations that include up to 416 vCPUs and an impressive 12 TB of memory. Experience outstanding performance with up to 3.7 million local storage IOPS per virtual machine. Utilize up to 30 Gbps Ethernet, alongside the groundbreaking deployment of 200 Gbps InfiniBand technology, to enhance connectivity. Select processors that meet your specific requirements, with options available from AMD, Arm-based Ampere, or Intel. Protect sensitive data, guard virtual machines against cyber threats, secure your network communications, and comply with regulatory standards. Use Virtual Machine Scale Sets to build applications that can scale seamlessly according to demand. Reduce your cloud costs by leveraging Azure Spot Virtual Machines and reserved instances, and establish a dedicated private cloud through Azure Dedicated Host. By hosting mission-critical applications on Azure, you can greatly improve system resilience and ensure uninterrupted operations. This all-encompassing strategy not only fosters innovation but also ensures that businesses stay secure and compliant in an ever-changing digital environment, enabling sustainable growth through technological advancement.
Learn more